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With  the  surging  demands  for  extremely  high  current  at
sub-1  V  supply  voltage level  in  high performance computing
and  autonomous  driving,  high  density  power  delivery  be-
comes  one  of  the  critical  limiting  factors  for  system  integra-
tion.  48  V  power  bus  system  is  emerging  for  these  high  cur-
rent  applications  to  reduce  the  IR  losses  on  the  power  deliv-
ery  networks.  Thus,  there  is  a  wide  voltage  gap  between  the
power  bus  and  the  digital  supply  rails  at  the  point-of-load
(PoL),  calling  for  novel  power  conversion topologies  and sys-
tem  architectures.  Although  the  performances  of  the  integ-
rated  power  circuits  heavily  depend  on  both  the  quality
factor  of  passive  components  and  the  figure-of-merit  (FoM)
of  active  devices,  a  smart  circuit  designer  should also  find an
optimum way to guide the currents and to deliver the power.

To  bridge  this  gap,  switched-capacitor-inductor  (SCI)  hy-
brid  DC–DC  converter,  started  from  the  double  step-down
buck  converter[1, 2],  has  been  the  hottest  topic  in  the  power
management  IC  area  in  the  past  5  years  or  so.  Researchers
from  different  groups  proposed  tens  of  innovative  topolo-
gies[3−8] and  several  efficient  operation  schemes[9],  and  sum-
marized design guidelines[10].  The basic  idea  of  a  hybrid  con-
verter  is  to  use  switched-capacitor  (SC)  cells  to  reduce  the
voltage  swing  on  the  power  inductor  such  that  a  smaller  in-
ductor  can  be  used.  On  the  other  hand,  it  brings  the  draw-
back  of  slow  transient  response  as  the  inductor  current  slew
rate  also  becomes  smaller[11].  In  this  letter,  we  would  like  to
share  several  of  our  observations  and  design  suggestions.
With  that,  we  may  build  new  hybrid  DC–DC  converters  like
building a “Golden-Gate Bridge” with basic circuit cells.

 A simple way to invent a new hybrid DC–DC
topology

We can obtain a new (but not necessarily new) hybrid con-
verter by replacing any one of the switches in an SC convert-
er  with a power inductor[12].  Then,  the SC converter becomes
a  hybrid  converter!  Furthermore,  we  can  also  replace  two
switches with two power inductors.  Again, a new hybrid con-
verter!!

But,  with two or more inductors,  we should not establish
a  state  with  two  inductors  in  series  which  will  generate  un-
wanted  energy  loss,  similar  to  the  charge  redistribution  loss
when  two  capacitors  connect  in  parallel.  And  of  course,  cir-
cuit designers still  need to analyze the voltage conversion ra-
tio,  small-signal  transfer  function,  switch voltage stresses and
inductor  current  stresses  of  the  new  hybrid  converter.  Al-

though  some  SC  converters  could  be  very  complicated  with
many switches and capacitors, eventually, only a handful of to-
pologies would make sense and be suitable for a targeted ap-
plication.

Next, let us discuss what would be the favorable basic cir-
cuit cells and building blocks for a switched-capacitor-induct-
or hybrid DC–DC converter (Fig. 1).

 One good low-side power switch

For large voltage conversion ratio step-down DC–DC con-
version,  when  one  side  of  the  power  inductor  connects  to
the output node, the other side would usually be switched to
the  ground  for  most  of  the  time.  Therefore,  the  circuit  cell
with  a  single  switch that  connects  the power  inductor  to  the
ground is  a must-have for high efficiency.  We can see several
of  these  good  examples  in  recent  ISSCC  papers[13−15].  Mean-
while,  transistor  stacking  technique  can  be  easily  applied
here  to  withhold  high  voltage  stress  with  two  or  more  low-
voltage  transistors,  improving  the  switch’s  figure-of-merit
(FoM)[16].

 Series capacitor(s) on the high-side

Series  capacitor(s)  on  the  high-side  is  for  reducing  the
power inductor voltage stress[17, 18]. For a very large VCR, mul-
tiple  capacitors  may  be  involved.  Therefore,  from  the  topo-
logy selection perspective, the high-side part has the most vari-
ations.  There are several  considerations in selecting the high-
side  series  capacitor  topology.  One  major  concern  is  the
voltage  ratings  of  the  capacitor(s)  and  the  switches.  High-
voltage capacitor has much less energy density while connect-
ing two or more capacitors in series also results in smaller equi-
valent  capacitance.  As  the  voltage  ratings  of  the  capacitors
and  switches  are  technology  process  dependent,  and  only
has  limited  selections,  the  high-side  series  capacitor  topo-
logy  design  is  highly  related  to  the  available  component
voltage  ratings.  Bootstrap  circuit  and  intermediate  voltage
rail  designs  are  also  very  important  for  reducing  the  silicon
area and optimizing the switching losses[19].

 Hard charging is not necessarily a bad thing

When  two  capacitors  with  different  voltages  exchange
charges  in  an  SC  converter,  a  high  peak  initial  current  would
happen,  diminishing  the  benefit  of  smaller RON of  the
switches. Conventionally, hard charging is considered as a dis-
advantage, as it is the root cause for the inherent charge redis-
tribution loss of an SC converter. However, hard charging has
two advantages. First, hard charging provides large output cur-
rent to the load, as there is no current limiting component (in-
ductor)  on the current  path.  As  capacitors  generally  have lar-
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ger  energy  storage  density  compared  to  inductors,  we  can
have  large  capacitance  to  reduce  the  dV  on  the  capacitors
and to mitigate the hard charging loss[20].  Second,  hard char-
ging  provides  instant  response  to  output  voltage  change[21].
When output voltage drops, the output current increases pro-
portionally,  alleviating  the  shortcoming  (slow  transient  re-
sponse with reduced inductor voltage) of hybrid DC–DC con-
verters.

 Resonant SC operation helps the efficiency

In  a  resonant  switched-capacitor  operation,  the  resonant
inductor shapes its current waveform into quasi-sinusoidal, re-
ducing  the  root-mean-square  (RMS)  current  when  conduct-
ing  the  same  average  current[22, 23].  To  deliver  the  same
amount  of  power,  resonant  SC  can  operate  at  a  lower  fre-
quency  when  compared  to  an  SC  converter.  On  the  other
hand, the resonant inductor also limits the instant output cur-
rent, and its DCR adds conduction loss. Usually, the value of a
resonant  inductor  is  much smaller  than that  of  the power  in-
ductor  in  a  typical  buck  converter,  so  its  DCR  can  be  negli-
gible.  Overall,  resonant  SC  operation  may  help  to  improve
the  conversion  efficiency  but  would  not  improve  the  power
density.

 High output current, multiple paths, multiple
inductors

Over  the  past  two decades,  single-inductor  multiple-out-
put  DC–DC  converter  has  also  been  a  very  popular  research
topic[24].  However,  when  it  comes  to  high  current  applica-
tions,  the  high  current  stress  on  the  power  inductor  forces

people to use multiple inductors.  In the past year,  a few mul-
tiple-inductor and multiple-output converters have been pro-
posed for high current applications[25−27].

In summary, SCI hybrid DC–DC converter provides plenty
of  room  for  innovations  and  performance  improvements.
With the suggested design considerations given in this letter,
we  may  easily  build  hybrid  DC–DC  converters  with  favorable
basic circuit cells. Looking forward, we see that hybrid DC–DC
converters  may  also  find  their  applications  in  multiple-out-
put and 3D integration scenarios.
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